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ANALYSIS OF LIQUID-VAPOUR PHASE 
TRANSITIONS FOR RESTRICTED PRIMITIVE 

MODEL OF IONIC SYSTEM IN MEAN 
SPHERICAL APPROXIMATION 

N. C. TKACHEV 

Institute of High- Tempera f ure Electrochemistry of' Russiun Academy 
of Sciences ( Urul Diuision), S. Kovalevskaya str. 20, 62021 9 

Ekuterinhury, Russia 

(Rrceirrd 3 Mny 199s)  

Within the framework of MSA exact solution for chargcd hard spheres with equal diameters found by 
Waisman and Lebowitz for Coulomb part of free energy and Mansoori ?I  o / . ,  approximation for hard 
sphere contribution characteristics of evaporation phase transitions in terms of the equation of state have 
been estimated. The phase diagram has been evaluated and the behaviour of thermodynamic properties 
studied in a wide range of temperature and pressure for the example close to K F  system. The position of 
the critical point is in accordance with the earlier determination of Telo da Gama. Evans and Sluckin 
using generalised MSA. Numcrical values of the coefficients in the expansion of the rclative deviation in 
pressure in  powers of temperature and order parameter have heen simply estimated near the critical 
region. Temperature and pressure dependencies of entropy and isothermal compressibility are typical 
enough for fluid systems, notwithstanding the collective nature of ionic interactions. In addition, the 
known Kauzman entropy paradox arises at low temperatures. 

KEY WORDS: Restricted primitive model, mean spherical approximation, equation of state, evapor- 
ation, critical behaviour. 

1 INTRODUCTION 

The restricted primitive model (RPM) is the first meaningful model of an ionic 
system in which phenomena of mutual repulsion at short distances combined with 
Coulomb interaction of the ions are considered. I t  is not accidental that a number of 
theoretical and computer simulation studies has been devoted to the predictions and 
consequences of that model. RPM attracts a special attention, once Vorontsov- 
Vel'yaminov and Chasovskikh'32 and Stell, Wu and Larsen3 (see also4) demonstrated 
the occurrence of liquid-vapour phase transitions. Also coexistence curve determina- 
tions have been carried out. In recent years significant progress was achieved in 
computer simulation estimations of RPM".". At the same time theoretical approaches 
have been evolved in which critical exponents for some simple variants of RPM were 
predicted, and the values established as classical or van der Waals ones. This phenom- 
enon was suitably explained with the long-range acting character of the Coulomb tail 
of pair potential (see recent review of Fischer'). Models of Debye-Hiickel type with 
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12 N.C.  TKACHEV 

Bjerrum's modification show that the position of the critical point is surprisingly 
close to modern computer simulation studies. Detailed analysis of correlation func- 
tion decay for GMSA RPM presented inx also confirms this mean-field picture. 
More complicated approximations based on the Poisson- Boltzmann equation 
reinforce these general points, at least for the order parameter behaviour'. 

The feasibility of the above problem, examined by means of an exact solution of 
mean spherical approximation (MSA) for charged hard spheres system, has demon- 
strated previously. As far back as 1972, Waisman and Lebowitzlo." deduced the 
Coulomb part of the RPM free energy according to MSA. Later Blum'2 succeeded 
in solving the problem in the general case of unequal sizes and charges by generalis- 
ing Baxter's factorisation procedure. In Blum and H4ye's work13 i t  has been quoted 
that the general relations of the model could be applied either to aqueous electrolyte 
solutions or to ionic melts. Nonetheless, up to now a list of applications is full 
enough for the former class of ionic systems, whose thermodynamic behaviour 
(activity and osmotic coefficients) can be described by that theory up to concentra- 
tions about 1 mole/litre and even higherI4. 

For molten salts partial structure factors mainly were investigated according to 
this m ~ d e l ' ~ , ' ~  and the numerical computations carried out by solving the Ornstein- 
Zernike equation system with MSA closure. Though these authors used a liquid salt 
density as a parameter that was adjusted to the experimental data, since low-angle 
scattering functions were expressed in terms of compressibility. This approach 
matches aqueous electrolyte solutions behaviour to a greater extent, because of the 
concentration of charged particles in a mixture. 

(see also') performed the phase diagram calculation in 
terms of the generalised MSA and showed a reasonable picture in T-p plane corre- 
sponding to numerical values of critical parameters lying between the earlier predic- 
tion of Stell, Wu and Larsen3 and the more recent computer simulation of Valleau'. 
HoweverI7, was dedicated to a molten salt surface to a greater extent, and further 
considerationsx have been concerned primarily with correlation function behaviour 
for this model. Some traditional thermodynamic applications were not pursued 
however by these authors. Besides, detailed analysis of the evaporation problem has 
not been carried out, especially using the equation of state although this model 
probably gives the most convenient analytical representation of the thermodynamic 
properties important for the practical problems. 

Therefore, the aims of the present work are, first of all, to present a more detailed 
analysis of the evaporation problem according to the MSA RPM treatment by the 
Mansoori et nl.,Ix approximation for hard sphere part of the fluid free energy includ- 
ing determination of nearby critical behaviour of the equation of state. Secondly, we 
shall estimate some important properties over a wide range of temperature and 
pressure, and shall discuss some quantitative aspects of MSA ionic system descri- 
bing low temperature liquid phase thermodynamics as applied to alkali halide melts. 
In doing so, thermodynamic calculations are supplied for such properties as en- 
thalpy, heat capacity at constant pressure and their dependence on pressure and 
temperature along the coexistence curve. Temperature dependence of entropy and 
isothermal compressibility for different pressures is also studied. 

Telo da Gama et 
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L l Q U  I D ~ VAPOUR P H A S E  TRANSITION 13 

2 CHARGED HARD SPHERES RESTRICTED PRIMITIVE MODEL: 
THERMODYNAMICS 

Waisman and Lebowitz"," found a closed form for the Coulomb contribution in 
direct correlation functions and Helmholtz free energy and showed that the low- 
density limit coincided with the Debye-Hiickel's theory of strong electrolytes at 
small concentrations. The MSA used in these studies is the closure of the Ornstein- 
Zernike equations by explicit expressions for direct correlation functions in the 
range of distances more than hard sphere diameters:Cij(R) = - ZiZje2/EkTR - ', 
R > d j j ,  where Zj,j, are values of ionic charges, e- electron charge, E -dielectric con- 
stant of the medium, in which ions embedded, k -  Boltzmann constant, T- absolute 
temperature. Pair distribution functions are equal to zero q i j ( R )  = 0 for R < di j .  For 
the RPM variant of the theory d j j  = d,  where d is the only parameter characterising 
hard sphere repulsion at short distances, and charge values Z, = - Z 2  with magni- 
tude equal to unity anywhere below. 

The expression for the Coulomb part of the Helmholtz free energy per ion can be 
reduced to the following form (see, for example' 1 * 1 3 , 1 "  1: 

where r is the parameter of the inverse length defining the screening scale in  the 
system at a given temperature and density. Blum has generalised this model to 
unequal sizes and charges of the constituent ions and has shown that Baxter's 
factorisation of the Ornstein-Zernike equation system leads to an algebraic equa- 
tion relating r and density12, namely r2 = K ;  C j  X j ( Z * ) 2  with K~ = J W T ,  
where p = N / V  is numerical density and /(,-the Debye inverse screening length 
xi-ions' relative concentrations in binary system (in this event it  is determined by 
electroneutrality condition, i.e. x i  = 1/2). I t  is convenient to follow Blum's formula- 
tion, because the expression for the screening characteristic of dense fluid includes 
only charge values "renormalization" (Z?) regarding Debye's low-density limit. In 
the case of equal diameters the screening parameter becomes the root of a quadratic 
equation, namely: 

The Coulomb terms into internal energy and entropy are equal to 

e2 r3 
A E C , = - - r ( l + T c i ) - '  and AS, ,=-k-- .  (3) 

1; 371P 

Hence, if one chooses some approximation for the hard sphere part of the ionic 
system free energy, it would be conceivable to acquire one and all thermodynamic 
properties of interest. In the present work the approximation of Mansoori et L I / . , ~ *  

has been applied for this purpose, because this approach is best suited to the 
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14 N.C.  TKACHEV 

computer simulation data for binary mixture of hard spheres with arbitrary diam- 
eter ratio. The excess Helmholtz free energy concerning the ideal gas in this approxi- 
mation is the following: 

n 
with q = u p  and u = - d 3 .  v(4 - 3 Y )  A Fh,$ = k T 

(1  - VrI2 ’ 6 (4) 

The excess entropy is simply equal to AShs = - A F h s / T .  The hard sphere term in the 
pressure of the system with equal diameters coincides with Carnahan-Starling formula. 
Thus the pressure expression for RPM under these approximations is as follows: 

Using thermodynamics for heat capacity at constant volume one obtains: 

3 r3(1 + rd )  
2 1 2 ~ ( 1 +  21-4’ 

c , ~  = - k + kd3 

since the hard sphere contribution to this quantity equals to zero. The isothermal 
compressibility xT is given by 

Likewise, one can derive for the isobaric bulk modulus: 

and the heat capacity at constant pressure can be rewritten according to the familiar 
thermodynamic relation2’: c p  = c y  + (T /p) (cc: /~~) .  

To conclude this section we consider the high-temperature limit. As T - + c c ,  
y-0, from ( 3 )  one obtains r - + K D / 2 .  Solving the resulting cubic equation with 
respect to the packing fraction gives rise to a branching point of three roots at 
infinite temperature, so it is necessary to select the only one matching the ideal gas 
asymptote, namely: 

x 1 i 2 e 3 p ~ / 2  

3 ~ ~ ’ ~ ( k T ) ’  ‘ 
(9) 

Isothermal compressibility, bulk modulus and heat capacities at constant volume 
and pressure vanish with increasing temperature too: 

1 1  
2 4  

x T  g P -  I (  1 + - x - - x 2  + . . . ), u p  g T -  ( 1 + 2x - .x’ + . . .), 
3 
2 

k + 4 k x - - x 2 +  ... 
5 
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LIQUID-VAPOUR PHASE TRANSITION 15 

At very high temperatures the theory must involve ions’ excitations and this 
contribution has to be inserted into internal statistical sums of the constituent ions 
in explicit form. The examination carried out below deals with the solely non- 
degenerate energy ionic level, i.e. any ion still remains on the ground state at any 
temperature and pressure, and the internal sum over states is reduced to the 
Boltzmann factor. That is why we use energy quantities with reference to the cation 
and anion energies on the ground state. 

3 ANALYSIS OF LIQUID-VAPOUR PHASE TRANSITIONS 

In the theories of van der Waals’ type, the contribution to the pressure relating to 
the attraction between particles depends on the square of the density, while the 
proportionality coefficient is independent on temperature, and evaporation takes 
place in this case. For charged hard spheres the “attractiveness”, being represented 
as a contribution to the pressure with the opposite sign to that of hard spheres, 
arises indirectly from the Coulomb tail of the pair potential, but it displays a 
particular statistical mechanical effect due to the phenomenon of short-range struc- 
ture forming in the fluid and it leads to evaporation in the same way. 

I t  is convenient to approach the evaporation properties from an assessment of the 
critical point location. As at the critical point distinction between liquid and vapour 
disappears, and the densities of both phases are exactly the same with isothermal 
compressibility tending to infinity, ordinary definition of zero values of the first and 
the second derivatives of pressure with respect to density can be used. This leads to 
the following system of equations for critical temperature and density (value of 
critical pressure is computed later using the equation of state): 

where C = q, and i = T,d are the critical values of packing fraction and the inverse 
screening length. Numerical compilations confirm that ( 1  1 )  has a unique solution in 
the physically reasonable range of parameters. 

Estimation of evaporation temperature and density drop between both coexisting 
phases at pressure lower than the critical involves solving the three equation system: 

where the first is the equality of Gibbs free energies of both phases; the second and 
the third reflect mechanical equilibrium at a given pressure Po. The above proposi- 
tion must be resolved for designated Po < P, concerning T,, ~ 7 , ~  and qc. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



N.C. TKACHEV 

Tk 

0.075 

0.07 

0.065 

0.06 

Figure 1 Liquid-vapour phase diagram calulated for MSA RPM. 

We next discuss the critical behaviour. For this purpose the equation of state in 
the critical region can be stated as usual: Ap = AAt + BAtAq + CAy3 + . . . , here 
A, = ( P  - PJP,, At = (T  - Tc)/ T,, Aq = ( q  - qC)/qc and coefficients in the expansion of 
correspondent pressure deviations from the critical one in powers of relative changes 
of temperature and packing fraction are equal to 

23(1 +A) 
A = l +  B =  

A3(  1 + A)(3 + 82 + 6A2) 
271P,* (1 + 2 4 ’  4nP,*(1 +2A)3 ’ 

A 3 ( l  + A ) ( l  + 123, + 16A2 - 12A3 -20A4) 
48(1 +21J5 

5 + 61 - l2 + 

The classical type of equation of state in the critical region provides the means to 
find “macroscopic” critical indices /?,]I and 6 at once, with values 0.5, 1 and 3, 
respectively. Though the expansion coefficients differ from those predicted by van 
der Waals theory, critical behaviour of both models is identical. It is important to 
note that the coefficients (16) are independent of diameter, charge and dielectric 
constant and their numerical values are A = 13.474, B = 13.228 and C = 0.271 
([ =0.00758, /z =0.5054). Curiously, the coefficient C has a rather small value and 
may be some modification of the theory would lead to its vanishing completely in 
order to yield a non-classical equation of state. Such formulation suggests that the 
next term in the expansion will be at least of fifth order in Aq, so exponent 6 
possibly may have the magnitude of 5, and thus may be close to the magnetic 
material spherical model. 

This prediction of the critical parameters is in complete agreement with the 
calculations of Telo da Gama et a1.,I7 in spite of different initial approximation for 
the direct correlation functions. Figure 1 represents the phase diagram of liquid- 
vapour in the T* - y  plane on logarithmic scale. Figure 2 shows the coexistence 
curve confining at T:,P,* in the P-T plane. The location of the critical point is 
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LIQUID VAPOUR PHASE TRANSITION 

0.058 0.068 0.078 
T* 

Figure 2 Evaporation presauie dependence upon temperature along the liquid-vapour coexistence curve 

Q, 2.5 

1.5 

(eV/ion) 

0.5 

0.058 0.068 T* 0.078 

Figure 3 Vapour to liquid enthalpy change along curve of lirst order phase transitions for example with 
tl=2.69 A(KF) .  It is well seen that square root behaviour nearby critical point corresponding to classical 
order parameter exponent. 

associated with the critical density p c d 3  = 0.01448, temperature T: =dekTJe’ = 

0.07877 and pressure P,* = P,d3/kT,. = 12.26 x 
To draw an example roughly corresponding to K F  (d = 2.69A) liquid to vapour 

enthalpy change along the coexistence curve below critical point is shown in Figure 3 .  
Heat capacities at constant pressure, isobaric bulk modulus and isothermal com- 

pressibility diverge in the critical region with exponent y .  Figure 3 shows such 
irregularity for heat capacity at constant pressure. Heat capacity at constant volume 
differs slightly from the van der Waals one only by the drop magnitude of the 
former that is obviously equal to zero at the critical point. For the latter, as is 
accepted21, over-critical vapour phase is the ideal gas by itself, and this change is 
equal to 9/2 k .  Nevertheless, the critical exponent r = 0 for both models. 

Macroscopic scaling assumptions alone provide no possibility to find 
“microscopic” exponents specifying radial distribution function and structure factor 
behaviour. For its estimation it is necessary to review the order parameter spatial 
fluctuations2”. By taking into account only the long-wave fluctuations contributing 
the main part of the “singular” term in the free energy functional, as expected in 
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18 N.C. TKACHEV 

100 I 
(ACP /k) 

10 - 
I 

1 

d=2.69 A 

0.1 
0.063 0.073 T" 

Figure 4 Vapour to liquid change of heat capacity at constant pressure along curve of first order phase 
transitions for example with d=2.69 &KF). Scale on y-axis is logarithmic. 

Ginzburg-Landau theory, the distribution of these fluctuations can be found. Then, 
the correlation function at large distances has the typical Ornstein-Zernike form: 
g(R)  z R -  exp( - R/R,), where radius of correlations R, % (2rJ ( -  2BAt) -  ' I 2 ,  so 
the exponent v has the value of 0.5. One might compare it with the detailed depic- 
tion of the decay GMSA correlation functions presented in Ref. 8. 

4 TEMPERATURE AND PRESSURE DEPENDENCES 
OF THE THERMODYNAMIC PROPERTIES 

A look at the thermodynamic properties' behaviour in a wide temperature and 
pressure range is of specific interest, because it allows one to examine the problems 
of building up a quantitative theory of fluid salt systems. Recently, a number of 
studies have been performed on the successful exploration of MSA charged hard 
spheres in aqueous electrolyte solutions up to very high  concentration^'^, for which 
thermodynamic self-consistency connected with equation of state becomes import- 
ant as well. Thus, it also has to be cleared up what one could expect from the theory 
in the density regions that cannot be attained in aqueous solution, but directly 
relating to ionic melts. 

The results of estimation for entropy and isothermal compressibility are presented 
in Figures 5 and 6 for temperatures up to 6000 K and five different pressures from 1 
to 450 atm (up to z lop,). The computations have been accomplished by means of 
numerical procedure of solving the equation of state concerning packing fraction. 
Newton method with initial quantities of relative density computing at the previous 
step on temperature was used. The magnitude of the step was 10 K, packing fraction 
value starting the procedure for the liquid phase has been set up equal to 0.45 and 
for the vapour one has been determined from solving of the evaporation topic. 

Thermodynamic characteristics supplied on these figures demonstrate representa- 
tive depiction of fluid systems as a whole. Some peculiarities are outlined by signifi- 
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LIQUID-VAPOUR PHASE TRANSITION 19 

S/k 
25 

20 

15 

10 

5 

0 
0 2000 4000 6000 

T (K) 
Figure 5 
to the values of pressure equal to 1.18,43,150 and 450 atni. 

Entropy dependence on temperature for five different pressures. Digits near the curves related 

..... ... ............. : I  .... 
XT (A3/ev) ........_I.. ., ...... .*.. .-., ..., 

10 ........ :. ....... L .... .&2.69 A ...... :. ..... -.:. ... 

0 1000 2000 3000 4000 5000 T(K) 

Figure 6 
for digits are the same as on Figure 4. Specified singularity (wi th  ; = I )  a t  F near P,. is well seen. 

Isot1ierm;tl compressibility dependence on tcinpcrature for five dilkrent pressures. Notations 

cant magnitude of the Coulomb interaction acting in the fluid. The model predicts 
some lower values on density. For example, at normal pressure near-melting pack- 
ing fractions ( ~ 0 . 4 5 )  correspond t o  temperatures of about 500 K. From our view- 
point i t  relates to the absence of interactions due to ion-dipole forces acting between 
the ions proportional to - R - 4 ,  and also with dielectric properties of such fluids. 
These forces must contribute to the equation of state the term describing some 
compression, and probably i t  should lead to a near-quantitative explanation of the 
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80 N.C.  TKACHEV 

alkali halide fluids' behaviour. At the same time, the introducing of ions' permittivi- 
ties and sizes' mismatch should breaks the corresponded states law. 

As is confirmed, a model of this type (with isotropic radial distribution func- 
tion) cannot give any phase transition into the crystal phase, though it is capable to 
show a boundary of liquid phase absolute instability. Indeed, Figure 5 illustrates an 
argument based on the known paradox found by Kauzman (see for example22). At 
low temperatures the heat capacity sharply increases as the temperature goes to 
zero, that is entropy reduces across zero point (magnitude of ideal crystal) to nega- 
tive values. Therefore, such system must either crystallise or freeze the configuration 
with topological properties of liquid, i.e., it has to be turned into glass by itself. The 
above behaviour could be possibly related to specified failings of MSA charged hard 
spheres remarked on in8.' regarding the determination of pair distribution func- 
tions, although it is not obvious, since the Kauzman paradox has the universal 
character for any undercooled liquid. 

5 CONCLUSION 

Inasmuch, because critical behaviour of this model corresponds to classical theories 
of van der Walls-Landau type, i t  might be concluded that the main basis of such 
picture resides in the existence of infinite radius of pairwise interaction. Situation in 
this sense looks like the issue for fluid of hard spheres plus attraction of exponential 
form, and for this event in one-dimensional case Kac, Uhlenbeck and Hemmer (see, 
for example2') have found the exact statistical integral and showed the total identity 
to the van der Waals theory combined with Maxwell construction. Most likely, an 
effective pair potential determined in Debye-Hiickel theory of electrolyte for 
charged hard spheres is close to the exponential form at least for long distances. As 
a consequence, it guides to the realisation of the above scenario about classical 
peculiarity of the equation of state for charged hard spheres in the critical region. 

Concerning the quantitative side of the results presented, the following may be 
noted. Taking into account Coulomb interaction makes possible to reduce the 
difference between theory and experiment compared with the simple hard sphere 
model. For example, i n  hard sphere systems predicted density values characterising 
a liquid close to melting temperature at normal pressure can be achieved only at 
temperatures near 0.1 K. Thus, the charging process yields an increase of these 
temperatures up to a few hundred degrees, at the same time melting temperatures of 
salt systems like alkali halides are much higher. Hence, for obtaining quantitative 
accordance of thermodynamic properties' predicted by the theory with experiment it 
is necessary to consider the succeeding terms in the expansion of the electrostatic 
energy of the ions in powers of the inverse length affected by ionic polarizability in a 
dielectric formalism. 

In our opinion there are two possibilities for improvements on the results pres- 
ented here. First, to start from a more sophisticated pair potential form and to solve 
in the spirit of the initial work of BlumI2, or secondly, to use the MSA charged hard 
spheres system as a reference for perturbative calculations. 
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L I Q U I D  V A P O U R  PHASE TRANSITION 81 

I t  is important to stress another important problem. The above analysis refers to 
the case of vacuum static dielectric constant. The approach to the problem would be 
more correct by introducing a step function of dielectric constant depending on 
distance. That is the first corresponding to internal dielectric permittivity of the ion, 
and the second related directly to the fluid structure forming phenomenon, for 
example in terms of Onsager equation23. May be this is the way to achieve the lsing 
universality class for certain ionic systems, at least in the case of liquid-liquid phase 
coexistence‘? 
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